





## **LLM Reasoners**

A library for advanced reasoning with LLMs

Shuhua

Xie



Shibo

Hao\*





Haotian Tianyang 1 00\*

Liu



Xiyan Shan



Xinyuan Wang



Haodi Ma



Samavedhi



Wang



Zhiting Hu

1

#### Large Language Model Reasoning

#### $\equiv$ **Google** The Keyword

#### In this story



#### Large Language Model Reasoning



|                                                                                                                                                       | OpenStreetMap Edit - History Export          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| List of museums in Pittsburgh                                                                                                                         |                                              |
| his list of museums in Pittsburgh, Pennsylvania encompasses<br>nuseums defined for this context as institutions (including nonprofit                  | Schenley Park, Pittsburgh, Alleghenry County |
| rganizations, government entities, and private businesses) that collect                                                                               | 💡 The Andy Warhol Museum, 117, Sandusky Str  |
| nd care for objects of cultural, artistic, scientific, or historical interest                                                                         | Car (OSRM) v Go                              |
| nd make their collections or related exhibits available for public viewing.<br>Jso included are university and non-profit art galleries. Museums that | Reverse Directions                           |
| xist only in cyberspace (i.e., virtual museums) are not included.                                                                                     | Directions X                                 |
| See also: List of museums in Pennsylvania                                                                                                             | 1 1. Start on Panther Hollow Road 200m       |
| Museums                                                                                                                                               | 2. Sight right onto unnamed road 150m        |





3

### Outline

• Reasoning with LLMs:



### Outline

• Reasoning with LLMs:



### Large Language Model Reasoning

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?



Wei et al., 2022 "Chain-of-thought prompting elicits reasoning in large language models."

#### **Standard Prompting**

#### Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

A: The answer is 27.

#### **Chain-of-Thought Prompting**

#### Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9.

Wei et al., 2022 "Chain-of-thought prompting elicits reasoning in large language models."



Wei et al., 2022 "Emergent abilities of large language models"

| Becomes the <b>Default Choice</b>                                                     |                                              | Claude 3<br>Opus           | Claude 3<br>Sonnet         | <b>Claude</b> 3<br>Haiku   |
|---------------------------------------------------------------------------------------|----------------------------------------------|----------------------------|----------------------------|----------------------------|
|                                                                                       | Undergraduate<br>level knowledge<br>MMLU     | <b>86.8%</b><br>5 shot     | <b>79.0%</b><br>5-shot     | <b>75.2%</b><br>5-shot     |
|                                                                                       | Graduate level<br>reasoning<br>GPQA, Diamond | <b>50.4%</b><br>0-shot CoT | <b>40.4%</b><br>0-shot CoT | <b>33.3%</b><br>0-shot CoT |
| 🤐 Open LLM Leaderboard                                                                | Grade school math<br>GSM8K                   | <b>95.0%</b><br>0-shot CoT | <b>92.3%</b><br>0-shot CoT | <b>88.9%</b><br>0-shot CoT |
| 문 EleutherAl / Im-evaluation-harness Public                                           | Math<br>problem-solving<br>MATH              | <b>60.1%</b><br>0-shot CoT | <b>43.1%</b><br>0-shot CoT | <b>38.9%</b><br>0-shot CoT |
| Sode ⊙ Issues 99 \$1 Pull requests 31 ⊙ Actions 	□ Projects 1 	0 Security 	∠ Insights |                                              |                            |                            |                            |

Can we design algorithms to generate better reasoning chains with LLMs?





# Reasoning with Language Model 🐨 is Planning with World Model 🐼



Shibo Hao\*

Yi Gu\*

\* Haodi Ma Joshua Hong Zhen Wang Daisy Wang Zhiting Hu

#### Chain-of-thoughts vs Human reasoning

Blocksworld: How to move the blocks to the goal state?



#### A: Chain-of-Thoughts Prompting (CoT) with LLM

Autoregressive decoding



#### **B: Human Reasoning**

- Internal world model to track states
- **Explore** alternative reasoning paths
- Assess outcomes by looking ahead



On the planning abilities of large language models (a critical investigation with a proposed benchmark) [Valmeekam et al, 2023]

Chain-of-thought prompting elicits reasoning in large language models [Wei et al., 2022]

Mental models: Towards a cognitive science of language, inference, and consciousness [Johnson-Laird, 1983]

From System 1 Deep Learning to System 2 Deep Learning [Bengio, 2019]

### Reasoning-via-Planning (RAP ))

#### Human Reasoning

- Internal world model to track states
- Explore alternative reasoning paths
- Assess outcomes by looking ahead

#### How to enable LLMs to reason close to humans?

#### Reasoning-via-Planning: RAP

- Repurpose LLM as world model
- Principled **planning** algorithm
- Rewards to estimate outcomes

#### Reasoning-via-Planning (RAP)



### Planning Algorithm

Monte Carlo Tree Search (MCTS): Iteratively build reasoning tree

- 1. Selection
- 2. Expansion
- 3. Simulation
- 4. Back-propagation

Balanced exploration and exploitation





#### RAP on Plan Generation (Blocksworld)



15

#### RAP on Plan Generation (Blocksworld)



### RAP on Mathematical Reasoning (GSM8k)



### RAP on Mathematical Reasoning (GSM8k)



#### RAP on Logical Reasoning (PrOntoQA)



#### RAP on Logical Reasoning (PrOntoQA)



(The hypothesis is false)

#### Solving Math Word Problems via Cooperative Reasoning induced Language Models

| Chain-of-Thought Prompting Elicits Reasonin<br>in Large Language Models                                                                                                         | Xinyu Zhu <sup>◊</sup> * Junjie Wang <sup>♦</sup> * Lin Zhang <sup>♡</sup> Yuxiang Zh •<br>Ruyi Gan <sup>♡</sup> Jiaxing Zhang <sup>♡</sup> Yujiu Yang <sup>◊†</sup><br><sup>◊</sup> Tsinghua University <sup>♦</sup> Waseda University<br><sup>♡</sup> International Digital Economy Academy<br>zhuxy21@mails.tsinghua.edu.cn yang.yujiu@sz.tsinghua.edu.cn                                                                                                                                              | Tree of Thoughts: Deliberate Problem Solving<br>with Large Language Models                                                                                                                                                                                                                                                                 |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Jason Wei Xuezhi Wang Dale Schuurmans Maarten Bosma<br>Brian Ichter Fei Xia Ed H. Chi Quoc V. Le Denny Zhou<br>Google Rescarch, Brain Team<br>{jasonvei,dennyzhou}@google.com R | wjj1020181822@toki.waseda.jp joel0495@asagi.waseda.jp<br>{zhanglin, ganruyi, zhangjiaxing}@idea.edu.cn<br>easoning with Language Model is Planning with World Mod                                                                                                                                                                                                                                                                                                                                         | Shunyu Yao         Dian Yu         Jeffrey Zhao         Izhak Shafran           Princeton University         Google DeepMind         Google DeepMind         Google DeepMind           Thomas L. Griffiths         Yuan Cao         Karthik Narasimhan           Princeton University         Google DeepMind         Princeton University |  |  |
|                                                                                                                                                                                 | Shibo Hao** Yi Gu** Haodi Ma <sup>6</sup> Joshua Jiahua Hong*<br>Zhen Wang** Daisy Zhe Wang <sup>6</sup> Zhiting Hu*                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                            |  |  |
| GRACE: Discriminator-Guided Chain-of-Thou                                                                                                                                       | <ul> <li>C San Diego, Conversity of Fiorida</li> <li>Mohamed bin Zayed University of Artificial Intelligence<br/>{s5hao, yig025, jjhong, zhw085, zhh019}@ucsd.edu</li></ul>                                                                                                                                                                                                                                                                                                                               | AlphaZero-Like Tree-Search can Guide<br>Large Language Model Decoding and Training                                                                                                                                                                                                                                                         |  |  |
| Muhammad Khalifa*, Lajanugen Logeswaran<br>Honglak Lee*†, Lu Wang*<br>University of Michigan*, LG AI Research <sup>†</sup> , University<br>Viet<br>Geo<br>ycz<br>{so            | DLCHAIN*: EFFICIENT ACTION SPACE NAVIGATIO<br>LARGE LANGUAGE MODELS WITH A* SEARCH<br>hen Zhuang <sup>1</sup> *, Xiang Chen <sup>2</sup> , Tong Yu <sup>2</sup> , Saayan Mitra <sup>2</sup><br>or Bursztyn <sup>2</sup> , Ryan A. Rossi <sup>2</sup> , Somdeb Sarkhel <sup>2</sup> , Chao Zhang <sup>1</sup><br>rgia Institute of Technology <sup>1</sup> Adobe Research <sup>2</sup><br>huang@gatech.edu, {xiangche, tyu, smitra}@adobe.com<br>aresbu, ryrossi, sarkhel}@adobe.com, chaozhang@gatech.edu | Xidong Feng <sup>*1</sup> Ziyu Wan <sup>*2</sup> Muning Wen <sup>2</sup> Stephen Marcus McAleer <sup>3</sup><br>Ying Wen <sup>2</sup> Weinan Zhang <sup>2</sup> Jun Wang <sup>1</sup>                                                                                                                                                      |  |  |

#### Analysis on current reasoning algorithms?

|                                                                                                                                                         | Solving Math Word Problems via Cooperative Reasoning indu<br>Language Models                                                                                                                                                                                                                  | uced                                                                                                                                                                         |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Chain-of-Thought Prompting Elicits Reason<br>in Large Language Models                                                                                   | Xinyu Zhu <sup>◊</sup> * Junjie Wang <sup>♠</sup> * Lin Zhang <sup>♡</sup> Yuxiang Zhar<br>Ruyi Gan <sup>♡</sup> Jiaxing Zhang <sup>♡</sup> Yujiu Yang <sup>◊†</sup><br><sup>◊</sup> Tsinghua University <sup>♠</sup> Waseda University<br><sup>♡</sup> International Digital Economy Academy | Tree of Thoughts: Deliberate Problem Solving<br>with Large Language Models                                                                                                   |  |  |
| Jason Wei Xuezhi Wang Dale Schuurmans Maarten Bosn<br>Brian Ichter Fei Xia Ed H. Chi Quoc V. Le Denny Zhoi                                              | zhuxy21@mails.tsinghua.edu.cn yang.yujiu@sz.tsinghua.edu.cn<br>wjj1020181822@toki.waseda.jp joel0495@asagi.waseda.jp<br>{zhanglin, ganruyi, zhangjiaxing}@idea.edu.cn                                                                                                                         | Shunyu Yao         Dian Yu         Jeffrey Zhao         Izhak Shafran           Princeton University         Google DeepMind         Google DeepMind         Google DeepMind |  |  |
| Google Research, Brain Team<br>{jasonvei,dennyzhou}@google.com                                                                                          | easoning with Language Model is Planning with World Mo                                                                                                                                                                                                                                        | Thomas L. Griffiths         Yuan Cao         Karthik Narasimhan           del         Princeton University         Google DeepMind         Princeton University              |  |  |
|                                                                                                                                                         | Shibo Hao*◆ Yi Gu*◆ Haodi Ma◇ Joshua Jiahua Hong◆<br>Zhen Wang <sup>◆</sup> ◆ Daisy Zhe Wang <sup>◇</sup> Zhiting Hu <sup>◆</sup>                                                                                                                                                             |                                                                                                                                                                              |  |  |
|                                                                                                                                                         | <sup>♣</sup> UC San Diego, <sup>◊</sup> University of Florida<br><sup>♠</sup> Mohamed bin Zayed University of Artificial Intelligence                                                                                                                                                         |                                                                                                                                                                              |  |  |
| GRACE: Discriminator-Guided Chain-of-Tl                                                                                                                 | {sonad, yigezo, jjindng, zhwebo, zhnels}eucsd.edu ———<br>{ma.haodi, daisyw}@ufl.edu                                                                                                                                                                                                           | AlphaZero-Like Tree-Search can Guide<br>Large Language Model Decoding and Training                                                                                           |  |  |
| Muhammad Khalifa*, Lajanugen Logeswaran To<br>Honglak Lee* <sup>†</sup> , Lu Wang*<br>University of Michigan*, LG AI Research <sup>†</sup> , University | OLCHAIN*: EFFICIENT ACTION SPTECHNIC                                                                                                                                                                                                                                                          | al Connection? -                                                                                                                                                             |  |  |

Yuchen Zhuang<sup>1</sup>\*, Xiang Chen<sup>2</sup>, Tong Yu<sup>2</sup>, Saayan Mitra<sup>2</sup> Which design really matters? Victor Bursztyn<sup>2</sup>, Ryan A. Rossi<sup>2</sup>, Somdeb Sarkhel<sup>2</sup>, Chao Zh Georgia Institute of Technology<sup>1</sup> Adobe Research<sup>2</sup> yczhuang@gatech.edu, {xiangche, tyu, smitra}@adobe.com

{soaresbu, ryrossi, sarkhel}@adobe.com, chaozhang@gatech.edu

Large Language Model Step-by-step Reasoning Difficulties in implementation…



$$\operatorname{argmax}_{(a_0,...,a_T)} \sum_{t=0}^{T} r(s_t, a_t), \ s_t \sim P(s_t \mid s_{t-1}, a_t)$$



. . .





. . .











Manipulates the blocks such that:

Task:

- Orange block on the blue block;
- Yellow block is on the orange block.







Task:



state() # the initial state
 step(state, action) # next state prediction
 is\_terminal(state) # determine terminal state





#### World Model

init\_state() # the initial state
step(state, action) # next state prediction
is\_terminal(state) # determine terminal state







#### Search Configuration

get\_actions(state) # get action space reward(state, action) # reward function

#### World Model

init\_state() # the initial state step(state, action) # next state prediction is\_terminal(state) # determine terminal state

#### Task:



from reasoners import SearchConfig, WorldModel from reasoners.algorithm import MCTS from reasoners.lm import Llama2Model from reasoners import Reasoner

```
class MyWorldModel(WorldModel):
   def step(self, state, action):
```

return self.llm.generate(self.next\_state\_prompt.format(state, action))

```
. . .
```

class MyConfig(SearchConfig):

```
def reward(self, state, action):
```

self\_eval = self.llm.generate(self.eval\_prompt.format(state, action)) return self eval

```
. . .
```

```
reasoner = Reasoner(
```

world\_model=MyWorldModel(), search\_config=MyConfig(), search\_algo= MCTS()



### Outline

• Reasoning with LLMs:



Large Language Model Step-by-step Reasoning How to evaluate step-by-step reasoning?

> <u>Question</u> Did Aristotle use a laptop?

**39%** of the **correct** answers were derived from **incorrect** reasoning chains! (Llama-2 70B on a random subset of StrategyQA)

**Reasoning Chain** 

 $a_0$ : Aristotle was born 384 BCE.

 $a_1$ : The laptop was invented in the 21st century  $a_2$ : Since it Is invented after his birth. The answer is no.

Answer-based Evaluation



Can we directly evaluate reasoning chains?

#### **Reasoning Chain Evaluation**

Previous methods:

- Compare to human-written reference (Celikyilmaz et al., 2020)
- Train a model to evaluate (Golovneva et al., 2022)
- Prompt GPT-4 to evaluate (He et al., 2023)

#### **Reasoning Chain Evaluation**

Previous methods:

- Compare to human-written reference (Celikyilmaz et al., 2020)
  - Train a model to evaluate (Golovneva et al., 2022) Training data
- Prompt GPT-4 to evaluate (He et al., 2023, Tyen et al., 2023)

Prompt engineering

• Need additional human efforts

Evaluation of text generation: A survey [Celikyilmaz et al, 2020] Roscoe: A suite of metrics for scoring step-by-step reasoning [Golovneva et al., 2022] SocREval: Large Language Models with the Socratic Method for Reference-Free Reasoning Evaluation [He et al., 2023]

#### **Reasoning Chain Evaluation**

Previous methods:

- Compare to human-written reference (Celikyilmaz et al., 2020)
- Train a model to evaluate (Golovneva et al., 2022) Training data
- Prompt GPT-4 to evaluate (He et al., 2023, Tyen et al., 2023)

Prompt engineering

#### LLMs cannot *find* reasoning errors, but can *correct* them!

**Gladys Tyen\*1, Hassan Mansoor<sup>2</sup>, Victor Cărbune<sup>2</sup>, Peter Chen**†<sup>2</sup>, **Tony Mak**†<sup>2</sup> <sup>1</sup>University of Cambridge, Dept. of Computer Science & Technology, ALTA Institute <sup>2</sup>Google Research gladys.tyen@cl.cam.ac.uk {hassan,chenfeif,tonymak,vcarbune}@google.com

- Need additional human efforts
- Overall unsatisfactory evaluation accuracy

Evaluation of text generation: A survey [Celikyilmaz et al, 2020] Roscoe: A suite of metrics for scoring step-by-step reasoning [Golovneva et al., 2022] SocREval: Large Language Models with the Socratic Method for Reference-Free Reasoning Evaluation [He et al., 2023]

#### Q: Can one ignite helium?

- 1. Helium is an odorless and tasteless gas.
- 2. Helium has no color.
- 3. So the answer is no.



#### Is this answer correct?

The given answer is partially correct...

#### Q: Can one ignite helium?

- 1. Helium is an odorless and tasteless gas.
- 2. Helium has no color.
- 3. So the answer is no.



Following the criteria, evaluate the reasoning chain step by step.

- Accuracy: ..., correct.
- Relevance: The information in the first two steps are irrelevant to the question.
- Logic: The final step cannot be inferred from the previous steps.

So, the reasoning is **INCORRECT**.



**Criterion List Construction** 

For question 1, the student made a factual mistake that Aristotle is a modern philosopher…

For question …, the student listed an irrelevant fact that …



To summarize, a good reasoning chain should …

- Accuracy: Be free of factual errors
- Relevance: …
- Logic: …

#### Q: Can one ignite helium?



- 1. Helium is an odorless and tasteless gas.
- 2. Helium has no color.
- 3. So the answer is no.

Following the criteria, evaluate the reasoning chain step by step.

- Accuracy: ..., correct.
- Relevance: The information in the first two steps are irrelevant to the question.
- Logic: The final step cannot be inferred from the previous steps.

#### So, the reasoning is **INCORRECT**.

| Method         | Math  |             | Common     |        | Logical      |           | Average |  |
|----------------|-------|-------------|------------|--------|--------------|-----------|---------|--|
| Wiethod        | GSM8k | Multi-Arith | StrategyQA | COSMOS | Logic-Deduct | Word-Sort | Average |  |
| Answer-based   | 0.86  | 0.94        | 0.76       | 0.60   | 0.87         | 0.94      | 0.83    |  |
| SocREval       | 0.89  | 0.85        | 0.71       | 0.79   | 0.89         | 0.77      | 0.82    |  |
| Direct (trace) | 0.90  | 0.38        | 0.80       | 0.72   | 0.21         | 0.36      | 0.56    |  |
| Direct (step)  | 0.85  | 0.43        | 0.83       | 0.71   | 0.75         | 0.33      | 0.65    |  |
| CoT (step)     | 0.78  | 0.74        | 0.78       | 0.70   | 1.00         | 0.86      | 0.81    |  |
| RICE (Ours)    | 0.91  | 0.85        | 0.79       | 0.76   | 0.97         | 0.86      | 0.86    |  |

- No additional human efforts needed
- Better average accuracy
- Remain robust across different tasks
- More accurate than answer-based evaluation

A case study on MultiArith (Srivastava et al., 2023)



```
SocREval (Baseline)
```

**Own response:** ... **Part C simplifies into (10 \* (-42)) = -420**. So the entire equation simplifies into 11 – 112 – 420 which equals -521.

Analysis: The generated response is correct and detailed… It ends with an accurate conclusion.

Overall quality: 5.0 (Correct)



Made the same mistake as the reasoning chain



False positive chains recognized by RICE:

| Туре | Question                                                                                                                                                                                                                      | Answer                                                                                                                                                                                                       | Explanation                                                                                                                                           |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| A    | Henry made two stops during his 60-<br>mile bike trip. He first stopped after<br>20 miles. His second stop was 15<br>miles before the end of the trip. How<br>many miles did he travel between his<br>first and second stops? | Step 1 - Henry traveled 20 miles +<br>15 miles = 35 miles between his<br>first and second stops.<br>Step 2 - Henry traveled 60 miles - 35<br>miles = 25 miles without stopping.<br>Step 3 - The answer is 25 | There is a hallucination in an<br>early reasoning step, but the<br>following reasoning steps ig-<br>nore the mistake and reach<br>the correct answer. |
| В    | Is "A Tale of Two Cities" a parody<br>of the Bible?                                                                                                                                                                           | "A Tale of Two Cities" was pub-<br>lished in 1859, and the Bible was<br>published much earlier. <b>Thus</b> , "A<br>Tale of Two Cities" is not a parody<br>of the Bible. So the answer is no.                | The reasoning chain has ob-<br>vious or multiple mistakes,<br>but hits the correct answer by<br>chance.                                               |
| С    | Is clementine pith highly sought af-<br>ter?                                                                                                                                                                                  | Clementine pith is not highly sought after. So the answer is no.                                                                                                                                             | The reasoning chain is not in-<br>formative at all, though the<br>answer is correct.                                                                  |

### Outline

• Reasoning with LLMs:



#### **Experimental Results**

| Method      | Math        |             |         | Logical  | Common             | Embodied    |
|-------------|-------------|-------------|---------|----------|--------------------|-------------|
| Method      | GSM8k*      | AQuA*       | Game-24 | PrOntoQA | StrategyQA*        | Blocksworld |
| СоТ         | 0.37 / 0.54 | 0.09 / 0.34 | 0.04    | 0.58     | 0.34 / 0.76        | 0.05        |
| RAP (Chain) | 0.44 / 0.52 | 0.11 / 0.34 | 0.01    | 0.43     | 0.28 / 0.72        | 0.19        |
| ToT (BFS)   | 0.53 / 0.58 | 0.15 / 0.42 | 0.04    | 0.52     | 0.41 / 0.76        | 0.09        |
| ToT (DFS)   | 0.45 / 0.52 | 0.10/0.36   | 0.07    | 0.44     | <b>0.42</b> / 0.76 | 0.08        |
| RAP         | 0.58 / 0.64 | 0.20 / 0.47 | 0.07    | 0.59     | 0.28 / <b>0.77</b> | 0.51        |

For three datasets marked with \*, we evaluate the reasoning chain with both RICE and the answer (RICE / Answer-based).

From auto-regressive decoding to reward-guided search

| Method      | Math        |             |         | Logical  | Common             | Embodied    |  |
|-------------|-------------|-------------|---------|----------|--------------------|-------------|--|
| wieulou     | GSM8k*      | AQuA*       | Game-24 | PrOntoQA | StrategyQA*        | Blocksworld |  |
| CoT         | 0.37 / 0.54 | 0.09 / 0.34 | 0.04    | 0.58     | 0.34 / 0.76        | 0.05        |  |
| RAP (Chain) | 0.44 / 0.52 | 0.11/0.34   | 0.01    | 0.43     | 0.28 / 0.72        | 0.19        |  |
| ToT (BFS)   | 0.53 / 0.58 | 0.15 / 0.42 | 0.04    | 0.52     | 0.41 / 0.76        | 0.09        |  |
| ToT (DFS)   | 0.45 / 0.52 | 0.10/0.36   | 0.07    | 0.44     | <b>0.42</b> / 0.76 | 0.08        |  |
| RAP         | 0.58 / 0.64 | 0.20 / 0.47 | 0.07    | 0.59     | 0.28 / <b>0.77</b> | 0.51        |  |

Overall improved performance with search

From auto-regressive decoding to reward-guided search

| Method      | Math        |             |         | Logical  | Common             | Embodied    |  |
|-------------|-------------|-------------|---------|----------|--------------------|-------------|--|
| Ivicuiou    | GSM8k*      | AQuA*       | Game-24 | PrOntoQA | StrategyQA*        | Blocksworld |  |
| СоТ         | 0.37 / 0.54 | 0.09 / 0.34 | 0.04    | 0.58     | 0.34 / 0.76        | 0.05        |  |
| RAP (Chain) | 0.44 / 0.52 | 0.11/0.34   | 0.01    | 0.43     | 0.28 / 0.72        | 0.19        |  |
| ToT (BFS)   | 0.53 / 0.58 | 0.15/0.42   | 0.04    | 0.52     | 0.41 / 0.76        | 0.09        |  |
| ToT (DFS)   | 0.45/0.52   | 0.10/0.36   | 0.07    | 0.44     | <b>0.42</b> / 0.76 | 0.08        |  |
| RAP         | 0.58 / 0.64 | 0.20 / 0.47 | 0.07    | 0.59     | 0.28 / 0.77        | 0.51        |  |

Less false positive chains!

#### Less false positive chains!

#### A mechanism to "regret"

From auto-regressive decoding to reward-guided search

| Туре | Question                                                                                                                                                                                                                      | Answer                                                                                                                                                                                                       | Explanation                                                                                                                                           |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| A    | Henry made two stops during his 60-<br>mile bike trip. He first stopped after<br>20 miles. His second stop was 15<br>miles before the end of the trip. How<br>many miles did he travel between his<br>first and second stops? | Step 1 - Henry traveled 20 miles +<br>15 miles = 35 miles between his<br>first and second stops.<br>Step 2 - Henry traveled 60 miles - 35<br>miles = 25 miles without stopping.<br>Step 3 - The answer is 25 | There is a hallucination in an<br>early reasoning step, but the<br>following reasoning steps ig-<br>nore the mistake and reach<br>the correct answer. |
| В    | Is "A Tale of Two Cities" a parody<br>of the Bible?                                                                                                                                                                           | "A Tale of Two Cities" was pub-<br>lished in 1859, and the Bible was<br>published much earlier. <b>Thus</b> , "A<br>Tale of Two Cities" is not a parody<br>of the Bible. So the answer is no.                | The reasoning chain has ob-<br>vious or multiple mistakes,<br>but hits the correct answer by<br>chance.                                               |
| C    | Is clementine pith highly sought af-<br>ter?                                                                                                                                                                                  | Clementine pith is not highly sought after. So the answer is no.                                                                                                                                             | The reasoning chain is not in-<br>formative at all, though the<br>answer is correct.                                                                  |

From auto-regressive decoding to reward-guided search

| Method      | Math        |             |         | Logical  | Common             | Embodied    |
|-------------|-------------|-------------|---------|----------|--------------------|-------------|
|             | GSM8k*      | AQuA*       | Game-24 | PrOntoQA | StrategyQA*        | Blocksworld |
| СоТ         | 0.37 / 0.54 | 0.09 / 0.34 | 0.04    | 0.58     | 0.34 / 0.76        | 0.05        |
| RAP (Chain) | 0.44 / 0.52 | 0.11 / 0.34 | 0.01    | 0.43     | 0.28 / 0.72        | 0.19        |
| ToT (BFS)   | 0.53 / 0.58 | 0.15 / 0.42 | 0.04    | 0.52     | 0.41 / 0.76        | 0.09        |
| ToT (DFS)   | 0.45 / 0.52 | 0.10/0.36   | 0.07    | 0.44     | <b>0.42</b> / 0.76 | 0.08        |
| RAP         | 0.58 / 0.64 | 0.20 / 0.47 | 0.07    | 0.59     | 0.28 / <b>0.77</b> | 0.51        |

The breadth of search matters more than the depth

The impact of world model

| Method      | Math        |             |         | Logical  | Common             | Embodied    |
|-------------|-------------|-------------|---------|----------|--------------------|-------------|
| Ivietitod   | GSM8k*      | AQuA*       | Game-24 | PrOntoQA | StrategyQA*        | Blocksworld |
| СоТ         | 0.37 / 0.54 | 0.09 / 0.34 | 0.04    | 0.58     | 0.34 / 0.76        | 0.05        |
| RAP (Chain) | 0.44 / 0.52 | 0.11 / 0.34 | 0.01    | 0.43     | 0.28 / 0.72        | 0.19        |
| ToT (BFS)   | 0.53 / 0.58 | 0.15 / 0.42 | 0.04    | 0.52     | 0.41 / 0.76        | 0.09        |
| ToT (DFS)   | 0.45 / 0.52 | 0.10/0.36   | 0.07    | 0.44     | <b>0.42</b> / 0.76 | 0.08        |
| RAP         | 0.58 / 0.64 | 0.20 / 0.47 | 0.07    | 0.59     | 0.28 / <b>0.77</b> | 0.51        |

A world model improves performance in most domains Most effective in Embodied Planning task

The impact of prompting format

| Method      | Math        |             |         | Logical  | Common             | Embodied    |
|-------------|-------------|-------------|---------|----------|--------------------|-------------|
|             | GSM8k*      | AQuA*       | Game-24 | PrOntoQA | StrategyQA*        | Blocksworld |
| СоТ         | 0.37 / 0.54 | 0.09 / 0.34 | 0.04    | 0.58     | 0.34 / 0.76        | 0.05        |
| RAP (Chain) | 0.44 / 0.52 | 0.11 / 0.34 | 0.01    | 0.43     | 0.28 / 0.72        | 0.19        |
| ToT (BFS)   | 0.53 / 0.58 | 0.15 / 0.42 | 0.04    | 0.52     | 0.41 / 0.76        | 0.09        |
| ToT (DFS)   | 0.45 / 0.52 | 0.10/0.36   | 0.07    | 0.44     | <b>0.42</b> / 0.76 | 0.08        |
| RAP         | 0.58 / 0.64 | 0.20 / 0.47 | 0.07    | 0.59     | 0.28 / 0.77        | 0.51        |

Did either Kublai Khan or his grandfather practice monogamy?

#### Q: Did either Kublai Khan or his grandfather practice monogamy?

Chain-of-thoughts:

Step 1: Both Kublai Khan and his grandfather, Genghis Khan, were polygamous. Step 2: Thus, neither Kublai Khan nor his grandfather practiced monogamy. Step 3: So the answer is no.



#### RAP:

Step 1: Did Kublai Khan have a harem? - Kublai Khan had a harem of 7,000 women. So the answer is yes. Step 2: Did Genghis Khan have a harem? - Genghis Khan had a harem of 500 women. So the answer is yes. Step 3: Does having a harem of women mean practicing polygamy? - Having a harem of women means practicing polygamy. So the answer is yes. Step 4: ... So the answer is no.



#### The impact of prompting format

| Туре | Question                                                                                                                                                                                                                      | Answer                                                                                                                                                                                                       | Explanation                                                                                                                                           |  |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| A    | Henry made two stops during his 60-<br>mile bike trip. He first stopped after<br>20 miles. His second stop was 15<br>miles before the end of the trip. How<br>many miles did he travel between his<br>first and second stops? | Step 1 - Henry traveled 20 miles +<br>15 miles = 35 miles between his<br>first and second stops.<br>Step 2 - Henry traveled 60 miles - 35<br>miles = 25 miles without stopping.<br>Step 3 - The answer is 25 | There is a hallucination in an<br>early reasoning step, but the<br>following reasoning steps ig-<br>nore the mistake and reach<br>the correct answer. |  |
| В    | Is "A Tale of Two Cities" a parody<br>of the Bible?                                                                                                                                                                           | "A Tale of Two Cities" was pub-<br>lished in 1859, and the Bible was<br>published much earlier. <b>Thus</b> , "A<br>Tale of Two Cities" is not a parody<br>of the Bible. So the answer is no.                | The reasoning chain has ob-<br>vious or multiple mistakes,<br>but hits the correct answer by<br>chance.                                               |  |
| С    | Is clementine pith highly sought af-<br>ter?                                                                                                                                                                                  | Clementine pith is not highly sought after. So the answer is no.                                                                                                                                             | The reasoning chain is not in-<br>formative at all, though the<br>answer is correct.                                                                  |  |

The impact of prompting format

| Method      | Math        |             |         | Logical  | Common             | Embodied    |
|-------------|-------------|-------------|---------|----------|--------------------|-------------|
|             | GSM8k*      | AQuA*       | Game-24 | PrOntoQA | StrategyQA*        | Blocksworld |
| СоТ         | 0.37 / 0.54 | 0.09 / 0.34 | 0.04    | 0.58     | 0.34 / 0.76        | 0.05        |
| RAP (Chain) | 0.44 / 0.52 | 0.11 / 0.34 | 0.01    | 0.43     | 0.28 / 0.72        | 0.19        |
| ToT (BFS)   | 0.53 / 0.58 | 0.15 / 0.42 | 0.04    | 0.52     | 0.41 / 0.76        | 0.09        |
| ToT (DFS)   | 0.45 / 0.52 | 0.10/0.36   | 0.07    | 0.44     | <b>0.42</b> / 0.76 | 0.08        |
| RAP         | 0.58 / 0.64 | 0.20 / 0.47 | 0.07    | 0.59     | 0.28 / 0.77        | 0.51        |

#### Easier to trigger false positives

But only for certain datasets, where the details are not necessary

### Summary $\checkmark$ Unpin ⊙ Unwatch 14 👻 앟 Fork 43 Starred 735 Ŧ Reasoning with LLMs: ٠ Algorithms, Evaluation, Analysis **LLM Reasoners**